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phasing procedure. The uncertainty in individual 
invariant relationships and the relative instability of 
existing phasing algorithms makes it possible for 
less-reliable invariants to succeed occasionally where 
more precise sets have failed. Nevertheless, it must 
remain true that the most precise invariants have a 
statistically better chance of providing a solution 
independent of the methods used to apply these 
invariants. 

In summary,  this study has shown that, for the 
eleven structures examined, normalized structure fac- 
tors, estimated from a Wilson plot using an exponential 
scaling function, the overall rescale and the random- 
atom expectation value are best suited for use in direct 
methods. 

The authors wish to acknowledge the assistance of 
the Australian Research Grants Committee (Grant: 
C7915302) during the tenure of this study. 
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Abstract 

A reliable estimate of the overall temperature factor B 
is shown to be important to the calculation of 
normalized structure factors, and to the application of 
structure-invariant phasing methods. Methods for 
obtaining improved estimates of B from the Wilson plot 
procedure are examined. The use of Bayesian statistics, 
the inclusion of missing data, the application of 
least-squares weights and the compensation for Debye 
scattering effects in the Wilson plot are considered. 
Estimates of B are compared for fourteen refined 
structures, including three proteins. 
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Introduction 

The standard method for estimating the overall 
temperature factor B and the structure-factor scale k 
from measured intensity data is by a linear least- 
squares fit to data in a Wilson plot (Wilson, 1942). In 
this plot of ln[IF~,I/(IF~,I)] versus s 2 the slope of the 
fitted line is --2B and the intercept at s 2 = 0 is - 2  In (k). 
Because the Wilson-plot method is simple and com- 
putationally convenient, it is widely used in many 
crystallographic laboratories for scaling data. It is 
therefore surprising that the computer programs 
applying this technique often produce quite different 
estimates of B and k from the same data. In fact, it is 
not uncommon for estimates to differ by as much as a 
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factor  of two from program to p rogram (see Tables 1 
and 2). Est imates  of  B also depart  significantly from the 
' t rue '  (refined) values of B. 

Moreover ,  it has been demonst ra ted  that  the expo- 
nential  scale k exp (Bs  2) provides consistent ly better 
est imates of  normalized structure factors than the other 
commonly  used alternatives (Subramanian  & Hall,  

Table  1. Test structures 

R = ZIIFo I -IF<IIIZiFol. 

Space R 
Formula group value Reference 

HCPP CIsHI6OI0 Pi 0.037 (a) 
CLEPX C30HIaCIa PI 0.037 (a) 
BEKA4 CsaH90N206 PI 0.055 (a) 
STIK4 CI4H1806 P21 0"050 (a) 
PDCPS C42H37CI2F6PPdSb 2 P2Jc 0.051 (a) 
CANON2 CIsHIaOs P21/n 0.058 (b) 
ANTH1 C34H260 4 P2Jc 0.034 (a) 
TEMPL C21H3404N3C1 P212121 0.056 (a) 
CORT C21H2sO5 P212121 0.058 (a) 
K22BR C35H4806 Iba2 0.049 (e) 
KCPP CI6HI9KOII Pcab 0.042 (a) 
RUBRDN rubredoxin R3 0.126 (d) 
INSULN 2-Zn pig insulin R3 0.113 (e) 
CRAMBN crambin P21 - -  (f)  

References: (a) Skelton & White (1981); (b) Hall, Raston & 
White (1978); (c) Declercq, Germain & Van Meerssche (1972); 
(d) Watenpaugh, Sieker, Herriott & Jensen (1973); (e) Isaacs & 
Agarwal (1978); (f)  Teeter & Hendrickson (1979). 

1982). This emphasizes  the need for procedures  that  
would reliably est imate B and k values for routine 
structure analysis.  In this s tudy the factors which are 
most  impor tan t  to this objective are identified. They  
include the t rea tment  of  weak intensity data;  the 
compensa t ion  for missing data ;  the averaging and 
weighting procedures;  and the use of  a selective 
least-squares process  to account  for the effects of 
Debye  scattering. Four teen  refined structures,  including 
those of  the three proteins rubredoxin,  insulin, and 
crambin  are used to examine the effect of  these factors 
on the Wilson plot process (see Table  1). A general 
procedure incorporat ing these features has been applied 
in the p rogram G E N E V  (Hall,  1981) for the X T A L  
system (Hall ,  Stewart  & Munn,  1980). 

The importance of a reliable B estimate 

The ' t rue '  B value for each test s tructure was obtained 
from a least-squares fit to the Wilson-plot  ratios 
evaluated with an expectat ion value ( IF21)  calculated 
from the refined atomic coordinates  [see expression (6) 
in Subramanian  & Hall ,  1982]. Typical  Wilson plots 
for four of the test s tructures (BEKA4,  C A N O N 2 ,  
C O R T  and K C P P )  are shown in Fig. 1 with the data  
points (shown as *) based on the refined structure- 
factor expectat ion value. The Wilson-plot  ratios, based 
on the r andom-a tom expectat ion value, are shown as O 

Table 2. Es t ima ted  overall  temperature f a c t o r  and  scale 

Estimated B (in A 2) and k values obtained using random-atom expectation values. All data are rescaled so that I E 12 = 1-0. 

Temperature factors Structure factor scales 

s 2 Refined GENEV EVAL NORMSF NORMAL Refined GENEV EVAL 
Test (max) (1) (2) (3) (4) (5) (6) (2) (3) 

HCPP 0.29 4.6 4.5 4.0 3.8 3.9 0.140 0.147 0.160 
CLEPX 0.25 4.0 3.8 3.3 3.1 3.1 0.269 0.270 0.297 
BEKA4 0.24 4.5 5-0 3.8 3.1 3.2 0.285 0.279 0.349 
STIK4 0.36 4.8 4-5 3.8 4.1 4.0 0.157 0.159 0.183 
PDCPS 0.42 3.6 3-5 3.4 3.5 3.4 1-200 1.268 1.274 
CANON2 0.24 3.8 4-0 2.7 2.0 2.1 0.079 0.079 0.096 
ANTHI 0.36 4-5 4-4 4.4 4.6 4.4 0.140 0.148 0.152 
TEMPL 0.29 4.4 4.6 3.8 3.9 3.7 0.462 0.479 0-556 
CORT 0.32 3.3 3.3 2.8 3.3 3.2 0.978 0.952 1-081 
K22BR 0.22 4.8 5.4 3.8 3.3 3.2 0.917 0.894 1-140 
KCPP 0.36 3.2 3.0 2.5 2.9 2.8 0.840 0.922 1.039 
RUBRDN 0.10 12.9 13.5 9-5 9.9 10.3 0.362 0.356 0-431 
INSULN 0-11 15.4 15.4 15.4 15.0 15-4 1-240 1-242 1.242 
CRAMBN 0.11 7.7* 7.8 7.6 8.1 8.3 1.069" 1.076 1.093 

NORMSF NORMAL 
(4) (5) 

0.165 0.170 
0.303 0.354 
0.372 0.385 
0.171 0-182 
1.264 1-300 
0.106 0-112 
0.142 0-154 
0.549 0-583 
0-975 1.042 
1.219 1.315 
0.908 0-992 
0.425 0.455 
1.290 1.275 
1.054 1.069 

Column I B values obtained from Wilson plot using expectation value calculated from refined atomic positions. 
Column 2 Program GENEV (Hall, 1981) including Bayesian, range-fill and inflection-point least squares. 
Column 3 Program EVAL (Hall, 1978). 
Column 4 Program NORMSF (Hall, (1972). 
Column 5 Program NORMAL (Main et al., 1980). 
Column 6 k values obtained from last refined cycle of structure-factor least squares, except in the case of RUBRDN and INSULN where 
k's were obtained in the renormalization procedure to set I ~(h) l 2 = 1.0. 

* Values supplied by Hendrickson (1980). 
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and are connected by a solid line. The near-linear 
relationship between the 'refined' ratios and s 2 provides 
a relatively precise estimate of the true overall B for 
each structure. 

There are a variety of factors responsible for the 
large differences in B estimates given in Table 2. Before 
analysing these factors it is important to establish that 

errors in B and k do have a significant effect on the 
reliability of the structure-invariant relationships. 

The four structures CLEPX,  BEKA4, C A N O N 2  
and K22BR were selected to test the effect of the large 
discrepancies in estimated B values. The methods 
employed in this study are similar to those used in the 
analysis of scaling functions by Subramanian & Hall 
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Fig. 1. Wilson plots for the test data of  (a) BEKA4,  (b) C A N O N 2 ,  (c) C O R T  and (d) KCPP.  The abscissa axis is s 2 and the ordinate axis 
is ln[I F21/(IF21)]; the scale is in terms of  the IF I-scale k. Data points denoted by O are for the random-atom expectation value ( IF21)  
= c ~ f  2. Data  points denoted by * are for ( IF21)  calculated from the refined atomic coordinates [see expression (6) of  Subramanian & 
Hall (1982)].  
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(1982). Two sets of  E values were calculated:  one 
based on the refined B, and the other on the lowest of  
the B values estimated by Wilson-plot  software. The 
results of  mean AEZ(=IIE21 - Ig211) and AEZ/I~21, 
where I~hl is the ' true'  normalized structure factor, are 
tabulated in Table 3. The correspondence between 
calculated I~'hl and the estimated IEhl values is poorest  
for those based on the low B values. 

The application of  refined phases to sets of  triplet 
and quartet  s tructure-invariant  relationships generated 
for the different I Enl values provides information on 
their reliability in phasing procedures.  One test, the 
percentage violations for triplets and quartets,  is shown 
in Table 4. A much m+ore sensitive criterion of  invariant  
reliability, the weighted root-mean-square  differences 
for q]3 and q]4, is tabulated in Table 5. 

The results of  these tests show clearly that  inaccurate  
B values give rise to less accurate structure invariants  
and therefore a potential  increase in phasing errors. The 
magnitudes of  these errors are not large; but never- 
theless their effect on the phasing process can be 
significant. It is well recognized in some phasing 
procedures that  small changes in phase reliability often 
have a profound effect on the structure solution 
process. It is the sensitivity of  s tructure-invariant  
procedures to these small changes,  part icularly in the 
initial stages, that  makes the need for the best possible 
B and k estimates so crucial. 

Table 3. Comparison of  Iffhl and lEa I for  different 
B values 

A E  2 and AEZ//z are the mean difference and the mean fractional 
difference between the I EnI's estimated using the listed B value 
and the calculated quasi-normalized structure factors Ilhl. All 
differences are for lYhl > 1.0. 

B(A 2) AE 2 AE2//2 B(A 2) dE 2 AE2/y z 

CLEPX 4.0 0.49 0.22 3-1 0-53 0.23 
BEKA4 4.5 0-80 0.32 3.1 0.88 0-35 
CANON2 3.8 0-87 0.31 2.0 1.02 0.36 
K22BR 4.8 0.76 0.36 3.2 0.81 0.37 

Table 4. Percentage o f  structure invariants violated 

T, PQ and NQ are the percentages of triplet, positive quartet and 
negative quartet with estimated q/values that differ from (~)  by 
more than 7r/2. These are compared for the refined B and the 
lowest estimated B (see Table 2). See Subramanian & Hall (1982) 
for definitions. B (/k z) is the B value used in the estimation of Eh. 

Test B (~2) T PQ NQ B (/~") T PQ NQ 
CLEPX 4.0 2.4 0.6 12-7 3.1 2.1 0.7 11-9 
BEKA4 4-5 4.8 0.6 35.3 3-1 7.9 2.3 39.7 
CANON2 3.8 9.8 0.4 2.6 2-0 9.6 13.9 5.1 
K22BR 4.8 7.4 - -  - -  3.2 13.3 - -  - -  

Table 5. Weighted phase discrepancies 

R.m.s.d. qt 3 and ~'4 are the weighted root-mean-square differences 
between the estimated and expected values (in degrees). These are 
compared for the refined B and the lowest estimated B (see Table 2). 
See Subramanian & Hall (1982) for definitions. B (A 2) is the B 
value used in the estimation of IEhi. 

R.m.s.d.R.m.s.d. R.m.s.d.R.m.s.d. 
B (A 2) ~'3 ~4 B (A 2) I/'/3 I/'/4 

CLEPX 4.0 5. 6. 3.1 11- 10- 
BEKA4 4.5 19. 48. 3.1 26. 70. 
CANON2 3.8 37. 3. 2.0 37. 8. 
K22BR 4.8 44- - -  3.2 52. - -  

Treatment  o f  weak data 

It is a common  practice in the reduction of  raw 
intensity data  to classify reflections with intensities 
below a certain threshold (say 3~rI) as unobserved and 
to consider them as an unreliable source of  structural 
information.  For  this reason, unobserved reflections are 
frequently excluded entirely from certain calculations.  
There are practical as well as historical reasons for this. 
In the past all visually measured film intensities below 
the calibration-strip limit were, indeed, unobserved,  and 
their exclusion meant  substantial  savings in comput ing 
time with little apparent  effect on the results. Mainly 
through the growth of  accurate  electron density studies, 
a better appreciat ion of  the impor tance  of  low-intensity 
data  has developed in recent years;  nevertheless, there 
still remains in many  laboratories  considerable inertia 
to use weak data  in every calculation. 

The correct  t reatment  of  weak data  is part icularly 
impor tan t  to Wilson-plot  estimates of B and k. Thermal  
motion and X-ray  scattering effects cause the average 
intensity to decrease rapidly with s 2. As a result, weak 
data  tend to predominate  in the high-angle regions of  a 
Wilson plot and give rise to significant systematic 
errors in the B and k estimates. 

Until recently there was little agreement  on how 
negative or weak intensities should be included in 
crystal lographic calculations.  This has been con- 
vincingly resolved by French & Wilson (1978) who 
emphasize the Bayesian nature of  intensity statistics. 
The procedure proposed by French & Wilson provides 
a statistically correct  method for est imating the 
structure factors and their s tandard deviations for net 
intensities below 30. 

Limited Bayesian treatment o f  weak data 

The correct  applicat ion of  the procedure of  French 
& Wilson (1978) requires a careful analysis of  the raw 
intensity data  and some independent  measurements  of  
equivalent reflections. The complete Bayesian treat- 
ment they propose is highly desirable for accurate  
electron density studies. However,  because of  the 
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additional data measurement and computational 
requirements it is unlikely that data used in routine 
structure analyses will be treated in this way. Yet in 
such cases it is possible to improve the overall precision 
of the intensities by a partial application of Bayesian 
statistics to data with I < 301. This is of particular 
benefit to data sets with a relatively large proportion of 
negative intensities, which would otherwise be used in 
the Wilson-plot process as zero. 

A simple one-pass approach to Bayesian statistics is 
possible provided that the average intensity for all shells 
of reciprocal space is assumed to be constant. Whereas 
this is a poor approximation to the full Bayesian 
treatment, it still is able to provide estimates for the 
measured structure factor I F~'l that are better than the 
arbitrary value of zero. In this study, this limited 
Bayesian approach was adopted, assuming a uniform 
average intensity of 20trI. Thereafter, the following steps 
were applied: 

(1) For reflections with I < 301 the ratio of the net 
intensity I and its standard deviation aI is calculated as 

J=I / c r I  for J = - 3 t o + 3 .  

(2) From Table 6 [an abbreviation of Table 1 from 
French & Wilson (1978)] the appropriate values of 
Re(J)  and Rs(J)  are selected. 

(3) The new values of IF~I and a lFh[ are estimated 
as  

IF~lZ = R~(J) aI  Lp (1) 

aZ(Fh) = RZs(J) al Lp, (2) 

where Lp is the Lorentz-polarization factor (IF~I = 
LpI). 

The effect of this simple correction was tested with 
the weak data sets of the structures HCPP, ANTH1, 
and KCPP. In each case the B estimate improved by 
about O. 1 A 2. 

Compensation for  missing weak data 

The effect of completely omitting weak data is 
predictable. It causes the average intensity for a given 

Table 6. Bayesian posterior moments 

Abbreviated table of French & Wilson (1978). 
Assumes that I/aI for all shells is 20. 

s 2 range to increase. Since the proportion of weak data 
increases with s 2, the B value estimated from a Wilson 
plot tends to be too low. This in turn results in fewer 
than expected large t Ehl values at high angles. 
Therefore, if reasonable B estimates are to be obtained, 
it is necessary to have some sort of compensation 
procedure for missing data in the Wilson-plot 
algorithm. 

All Wilson-plot procedures compute for each of the 
n ranges sums of the type 

N 
Z m, Z mlF21, Z m e Z  f z  and Z ms2, 

where m is the reflection multiplicity. The expected 
reflection population of the ith shell of reciprocal space 
is simply 

32 
n~ (s~ 3 - -  - - S i _ l ) ,  (3)  

3V* 

where V* is the volume of the reciprocal cell. The 
number of missing reflections in the ith shell is therefore 

A i = n i -- (~ m) i. (4) 

If the mean IF21 of the missing reflections is known, 
then the sums for the ith range can be suitably adjusted. 

An estimate of the mean I Fh21 for missing data can be 
made in several ways. One way is to calculate the 
average alE21 for the weaker intensities in the ith 
range, and adjust each Wilson-plot sum with an I F h21 
value estimated from a IF21 using Bayesian statistics. A 
simpler variation to this approach is to set the missing 
I Fh21 values equal to qalF2hl/2, where qolF~l is the 
known data cut-off value. Another way, useful when 
trlFh z I estimates are not available, is to find the (I F21)min 
value in each range and add the missing reflections with 
IF 2) = IF21mtn/2. 

This last approach was used to compensate for the 
1850 reflections omitted from the data set of the protein 
rubredoxin, RUBRDN (Watenpaugh, Sieker, Herriott 
& Jensen, 1973). Fig. 2(a) shows the Wilson plot with 
the data points before and after compensation denoted 
by * and O, respectively. The B values estimated from 
these plots were 9.5 and 13.5 A z, respectively. The 
latter value is within 5% of the refined value given in 
Table 1. 

Centrosymmetric Noncentrosymmetric 
distribution distribution Wilson-plot least-squares weights 

J R F R s Rp  R s 

- 3  0.30 0-23 0.47 0.24 
--2 0.36 0.26 0.54 0.27 
--1 0.44 0.31 0.65 0.31 

0 0.57 0.37 0.81 0.38 
1 0.82 0.44 1.06 0.36 
2 1.22 0.45 1.37 0.31 
3 1.62 0"35 1.69 0.25 

The application of least squares to the Wilson-plot 
process requires the correct evaluation of the number 
and the variance of the contributing reflections. In 
general experience has shown that the application of 
least squares without pre-averaging into reciprocal- 
space shells tends to be unreliable because the estimates 
of trlF21 have an unacceptably high correlation with 
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IF21• The WiJ_son plot may be considered as a set of r 
points pi(R, s2), i = 1 to r, where s 2 is the mean s 2 for 
the range, and R the natural logarithm of the ratio of 
the mean I F~nl 2 and the mean expectation value (IFh21). 
The only parameter in the ratio term for the ith shell, 
Ri, to contain significant experimental errors, is the 
value I F~,I. 

(IF~I)i 
Ri= In ((Ir21)) i  (5) 

The mean value of IF21 for the ith shell is 

tl i 

Y WhlF~l 
( I F 2 1 ) i -  , (6) 

ni 

Z w, 
where the n~ is the number of reflections contributing to 
the ith shell, and Wh is the individual weight associated 
with each value of IF21. By definition, 

Wh = ( 0 . 2 [ F 2 1 ) - L  ( 7 )  

This leads directly to the variance of the mean I Fh21 for 
the ith shell as 

In the Wilson-plot least-squares process each point 
should be weighted with the reciprocal variance 

09 i = (0 .2 R i ) - '  (9) 

The variance of R i can be obtained in terms of its 
components by differentiating (5) with respect to I F~I, 

o2(F2)i  
0.2R i - (10)  (Fh2)~ 

Expanding (10) from ( 8 )  

[ I]' 0 .2 Ri = (F-~)~ Wh ( l  l)  

and the least-squares weight for the ith shell from (9) is 

(-O i = ( F 2 ) ~  Y. Wh. ( 1 2 )  

The individual reflection weight Wh can be expressed 
in terms of the measured structure factor I Fh I and its 
standard deviation o lFul 

w h = 21Fhl0 .1Fh I. (13)  

The application of the least-squares weights c~ to the 
Wilson plot using values of Wh calculated from (13) is 
usually unreliable• Its unreliability arises principally 
because the reflection weight is dependent on the terms 
I F~l and 0.1FEI and these are generally highly cor- 
related. In other words, the weight expression contains 
a systematic bias due to the estimate of 0.1Fh21 being 
dependent on the value of I F~,l. This situation is 
analogous to several other crystallographic cal- 
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Fig. 2. Wilson plots for the test data from the protein rubredoxin, RUBRDN.  Abscissa and ordinate scales are as defined for Fig. 1. 
(a) Wilson plots obtained with random-atom expectation value: the • data points are before compensation for missing reflections; the O 
points correspond to data after compensation. (b) Wilson plot using the expectation value given by refined atomic coordinates is denoted 
as *. The O data points are defined as in (a). 
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culations involving individual weights, such as weighted 
Fouriers (Davis, Maslen & Varghese, 1978). 

For the test structures used in this study all values of 
olFZhl were derived from intensity statistics alone and 
this precluded the application of Wh as in (13). For this 
reason Wh were set to unity. The average weight ¢oi for 
each value of Ri then simplifies to 

co i = ni(F2)~. (14) 

The application of co i from (14) also proved unreliable 
because it gives low weight to the high-angle points that 
are so critical to the estimation of the B value. 

In summary, the application of least-squares weights 
based on o lF~,l proved to be impractical because of its 
strong correlation with I__F~I. The most reliable weight, 
o9 i, for each point Pi(R, s 2) of a Wilson plot was found 
to be unity. 

There is also another reason why the application of 
the above weights to the Wilson-plot least squares was 
not effective. As a general rule statistical weights are 
only applicable in a linear least-squares process in the 
absence of significant systematic errors. It is a common 
occurrence in a Wilson plot that data points depart 
from the fitted least-squares line by over three standard 
deviations. These deviations are mainly due to the 
presence of short-range translational symmetry in the 
structure (Debye, 1915) and this largely invalidates the 
normal use of coi in the Wilson plot. 

Allowance for Debye scattering 

In practice the reliability of a B estimated from a 
Wilson plot is much more dependent on allowing for 
Debye scattering effects than on the correct least- 
squares weights. This is particularly true if reflection 
data are truncated at an s 2 value where the Debye 
effects are large. In this study the test structures with 
the lowest Sma x2 had consistently worse estimates of B 
from conventional Wilson-plot least-squares pro- 
cedures (see Table 2). 
, Two methods of allowing for Debye scattering 
effects were studied using four of the test structures, 
CLEPX, BEKA4, CANON2 and K22BR. In one 
method, known conformational information was incor- 
porated in the expectation value used in the Wilson-plot 
ratio. In another, points in the Wilson plot which were 
less dependent on Debye scattering effects were used in 
the linear least-squares process. 

Debye expectation value 

A commonly used approach to compensate for 
Debye scattering effects incorporates known con- 
formational information in a Debye form of the 
expectation value (IF~I)  used in the Wilson-plot 

procedure (Main, 1976; Main et al., 1980; Hall, 1978). 
The Debye expectation value has the form 

x x sin 4 nsdj, 
(IF~L) = ~ ~ f j  f ,  , (15) 

j , 4 ~ d i ,  

where djk is the distance in fi.ngstr6ms between the j th  
and kth atoms. Because the Debye expectation value is 
usually a closer approximation to the mean value of 
I Fh21 than the random atom for each range, the 
resulting Wilson-plot ratio [see (5)] will be a smoother 
function of s 2 [see Fig. 7 of Subramanian & Hall 
(1982)]. It follows that provided sufficient con- 
formational information is available for inclusion in 
(15), this might be expected to improve the Wilson-plot 
estimate of B and k. 

Experience has shown, however, that the results of 
this approach are often disappointing. The application 
of the Debye expectation value to CANON2 and 
CORT using the rigid fragment of these molecules did 
not provide significant improvements in the estimate of 
B. The Debye estimate of B for CANON2 was 
marginally better than the random-atom value by 
0.1 A 2 but the value for CORT was worse by the same 
amount. These and other tests suggest that the use of 
the Debye expectation value results only in marginal, if 
any, improvements in the estimate of B. 

There are also several drawbacks to this approach. 
The first is the need to know a priori conformational 
information of the structure. The second is the time and 
effort required to prepare the coordinate information 
used in the calculation of the Debye expectation value. 
For particularly difficult analyses the additional effort 
would be worthwhile even for marginal improvements 
to the estimates of B, but for routine analyses 
application of the Debye expectation value appears 
unwarranted. It should also be noted that the use of 
Debye expectation value in the calculation of nor- 
malized structure factors is not recommended for 
routine phasing procedures (Ladd, 1978: Subramanian 
& Hall, 1982). 

Inflexion-point least squares 

A more effective approach to account for Debye 
scattering in Wilson-plot least squares is proposed here. 
It is based on the close similarity of Debye scattering 
curves for a broad range of structure types. This 
similarity is expected because the structural compo- 
nents that give rise to the dominant features of a Debye 
curve are generally present in most structures. To 
illustrate this, a simple six-membered ring system was 
selected as typical of interatomic distances found in a 
large number of structures. 

A series of scattering curves based on the ratio of the 
Debye and random-atom expectation values for this 
six-atom ring structure was calculated for a range of s ~. 
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These curves are shown in Fig. 3 for the nearest- 
neighbour C - C  distances of 1.5, 1.4 and 1.3 A. They 
are characterized by two dominant features; a large 
peak at about s 2 = 0-2, and a large trough at about s 2 = 
0.1. Less conspicuous but of equal importance is the 
low-angle portion of the curve where the ratio 
approaches the value of 1.0. These are familiar features 
in the Wilson plots for a wide range of molecular 
structures, and particularly those with the hexagonal 
motif. The peak close to s 2 = 0.2 is frequently 
responsible for poor estimates of B, especially if Sm, x 2  is 
close to 0.2. This is the case for the data sets of 
CLEPX,  BEKA4, C A N O N 2  and K22BR (see Table 
2). 

It is also evident from Fig. 3 that the Debye curve 
'inflexion points' on either side of s 2 = 0.2 are close to 
the median line of the Wilson plot. In theory it should be 
possible to calculate the position of the Debye inflexion 
points from d2R'/d2(s2) = 0, where R'  ( = R  + 2 B s  2) is 
the Wilson ratio R [see (5)]. Although an initial 
estimate of B may be obtained by conventional 
methods it is difficult to estimate reliably the change of 
slope of R'.  Numerical interpolation methods are 
cumbersome even with elaborate smoothing tech- 
niques. Fitting a polynomial function to R'  is poten- 
tially a more reliable approach but it is still likely to 
require iterative procedures. 

There is a less complicated method of utilizing 
inflexion points. Fig. 3 shows that the inflexion points 
on either side of the 0-2 peak are within quite 
predictable zones of s 2. This observation is well 
supported by the Wilson plots for a wide range 'of 
structures. In addition, the precision of the s 2 value 
used to locate the inflexion point of the Debye curve 
does not seem critical to the Wilson-plot process. To 
illustrate this, Wilson-plot inflexion points for all test 

structures were assumed to occur at fixed s 2 values: five 
data points closest to s 2 -- 0.15 and five closest to s 2 = 
0.26 were selected for a least-squares calculation. Also 
included in this calculation were five points with the 
highest values of R. These latter values provide 
low-angle information which is relatively insensitive to 
the Debye fluctuation (see Fig. 2). Each point is 
weighted according to the number of contributors to 
that shell. 

For all test structures except ANTH 1 the inflexion- 
point least-squares procedure gave B estimates closer 
to the refined values than those obtained by con- 
ventional Wilson-plot programs (see Table 2). For 
A N T H  1, the B estimate of 4 .2 /k  2 was still acceptably 
close. No attempt was made in these tests to optimize 
the values of s 2 used to locate the inflexion points, 
though this would have further improved the B 
estimates. The approximation of inflexion points at 
fixed values of s 2, in fact, emphasizes the robustness of 
this approach and the improvements that can result. 
Estimates of B from G E N E V  (see Table 2, column 2) 
agree on the average to within 5% of the refined values; 
the B values from programs employing conventional 
Wilson-plot methods have average differences of about 
16%. These averages exclude the B values for the three 
proteins, where inflexion-point least squares could not 
be applied because the Sma x 2  is below 0.15. 

Table 2 also lists the refined and estimated structure- 
factor scales for each of the test structures. The k 
values were obtained by rescaling the I Ehl values 
calculated from the estimated B value so that the mean 
IE21 = 1.0. The refined k values are from the final 
structure-factor least-squares cycle. The importance of 
the correct B values to the estimate of k is evident from 
Table 2. 

1.1- (a) I "~ I 

1 . 1 - ~  
1.0- 
0 9 -  , 

0-0 0.1 s 2 0-2 0.3 0.4 
Fig. 3. Plots of the ratio Z ~ Z 6 f J ~ ( s i n 4 n s d J 4 n s d j k ) / ~ _ 6 f 2 j  

versus s 2 for the interatomlc distances dik of a six-membered 
carbon ring. Plots (a), (b) and (c) are for nearest-neighbour C-C 
distances of 1.5, 1.4 and 1.3 A, respectively. The shaded bands 
indicate zones of s 2 where these curves deviate least from the 
median line. 

Conclusions 

The deleterious effect of incorrect B and k values on the 
normalized structure factors and hence on the 
structure-invariant phase relationships is demon- 
strated. A number of approaches to improve the 
Wilson-plot estimate of the overall temperature factor 
B has been examined. The use of Bayesian statistics is 
suggested in the reduction of intensity data, or, if this is 
not possible, the application of a more limited Bayesian 
treatment during the Wilson-plot calculation is recom- 
mended. A simple method to compensate for missing 
weak reflections is proposed. 

The use of least-squares weights in the Wilson plot 
was considered and found unreliable because of the 
high correlation between IFh21 and a lF~,l, and the 
systematic effects of Debye scattering. 

The dominant influence of Debye scattering effects 
on the Wilson-plot process was studied separately. The 
application of the Debye expectation value to R I see 
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(5)] was found to provide only marginal, if any, 
improvement in the B estimate, and to have a number 
of drawbacks. The concept of Debye-curve inflexion 
points is introduced and a straightforward and 
relatively robust method for improving the least- 
squares process, based on predictable features of a 
Debye curve, is described. Values of B estimated by the 
inflexion-point method are, on average, 10% better 
than those calculated by conventional methods. 

The authors wish to acknowledge the assistance of 
the Australian Research Grants Committee (Grant: 
C 7915302) during the tenure of this work. 
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Abstract 

A method for calculating the expected errors in I Ehl 
values is outlined. It is based on the precision of the 
measured data and the Wilson-plot parameters: and 
allows for errors arising from the use of the profile 
scaling function and/or the index rescaling procedure in 
the normalization scheme. Six refined structures are 
used to test the estimated errors in I Ehl against values 
deduced from a comparison with the 'true' normalized 
structure factor [ ~h[. 
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Introduction 

One of the most serious obstacles to structure solution 
by statistical invariant methods is the sensitivity of all 
phasing procedures to errors in the initial phase 
relationships. The generation of a single incorrect phase 
in the early stages of a phasing procedure can often 
result in the failure of the entire process. For this reason 
computer programs place a strong emphasis on the 
choice of initial starting phases and on the order in 
which the invariants are processed. 

There are a number of different approaches to the 
selection of starting phases but all of them depend on 
one fundamental quantity, namely, the magnitude of 
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